Nonparametric Graphical Models Pni Meeting Lecture #1
نویسنده
چکیده
My name is Han Liu, I am an assistant professor in ORFE. This is joint work with Ken Norman and Jeremy, Xiaoyan, and Angela. A nonparametric graphical model is a very powerful tool for analyzing complex data; these tools can be published in highly theoretical journals (statistics), but on the other spectrum, you can publish this in Nature, or Quantitative Finance. It is simple, theoretically interesting, and interesting to applications. It has been successfully applied on resting state fMRI data. We are trying to extend this approach to task-specific fMRI.
منابع مشابه
Structure Learning with Nonparametric Decomposable Models
We present a novel approach to structure learning for graphical models. By using nonparametric estimates to model clique densities in decomposable models, both discrete and continuous distributions can be handled in a unified framework. Also, consistency of the underlying probabilistic model is guaranteed. Model selection is based on predictive assessment, with efficient algorithms that allow f...
متن کاملSparse Nonparametric Graphical Models
We present some nonparametric methods for graphical modeling. In the discrete case, where the data are binary or drawn from a finite alphabet, Markov random fields are already essentially nonparametric, since the cliques can take only a finite number of values. Continuous data are different. The Gaussian graphical model is the standard parametric model for continuous data, but it makes distribu...
متن کاملBlossom Tree Graphical Models
We combine the ideas behind trees and Gaussian graphical models to form a new nonparametric family of graphical models. Our approach is to attach nonparanormal “blossoms”, with arbitrary graphs, to a collection of nonparametric trees. The tree edges are chosen to connect variables that most violate joint Gaussianity. The non-tree edges are partitioned into disjoint groups, and assigned to tree ...
متن کاملContinuous Graphical Models for Static and Dynamic Distributions: Application to Structural Biology
Generative models of protein structure enable researchers to predict the behavior of proteins under different conditions. Continuous graphical models are powerful and efficient tools for modeling static and dynamic distributions, which can be used for learning generative models of molecular dynamics. In this thesis, we develop new and improved continuous graphical models, to be used in modeling...
متن کاملThe Phylogenetic Indian Buffet Process: A Non-Exchangeable Nonparametric Prior for Latent Features
Nonparametric Bayesian models are often based on the assumption that the objects being modeled are exchangeable. While appropriate in some applications (e.g., bag-ofwords models for documents), exchangeability is sometimes assumed simply for computational reasons; non-exchangeable models might be a better choice for applications based on subject matter. Drawing on ideas from graphical models an...
متن کامل